Scientists at Lawrence Livermore National Laboratory used supercomputers to simulate what would happen to carbon and hydrogen atoms buried 40 to 95 miles beneath the Earth’s crust, where they would be subjected to prodigious pressures and temperatures.
They found at temperatures greater than 2,240 degrees F and pressures 50,000 times greater than those at the Earth’s surface, methane molecules can fuse to form hydrocarbons with multiple carbon atoms. Interactions with metal or carbon sped up the fusion process, the researchers said. These conditions are present about 70 miles down, according to an LLNL news release. _PopSci
A team of scientists and engineers from UC Davis, Lawrence Livermore Labs, and Shell Projects and Technology have created sophisticated simulations which demonstrate that methane can be polymerised to multi-carbon chains under conditions similar to those in the deep crust and mantle of Earth. (Published in PNAS)
...hydrocarbons of purely chemical deep crustal or mantle origin (abiogenic) could occur in some geologic settings, such as rifts or subduction zones said Galli, a senior author on the study.
"Our simulation study shows that methane molecules fuse to form larger hydrocarbon molecules when exposed to the very high temperatures and pressures of the Earth's upper mantle," Galli said. "We don't say that higher hydrocarbons actually occur under the realistic 'dirty' Earth mantle conditions, but we say that the pressures and temperatures alone are right for it to happen.
Galli and colleagues used the Mako computer cluster in Berkeley and computers at Lawrence Livermore to simulate the behavior of carbon and hydrogen atoms at the enormous pressures and temperatures found 40 to 95 miles deep inside the Earth. They used sophisticated techniques based on first principles and the computer software system Qbox, developed at UC Davis.
They found that hydrocarbons with multiple carbon atoms can form from methane, (a molecule with only one carbon and four hydrogen atoms) at temperatures greater than 1,500 K (2,240 degrees Fahrenheit) and pressures 50,000 times those at the Earth's surface (conditions found about 70 miles below the surface). _PO
More information in an earlier AFE posting
No comments:
Post a Comment