Monday, January 24, 2011

Vinod Khosla Summarizes Vast Field of Biofuel Companies

Vinod Khosla is an important venturist godfather of the biofuels industry. In a recent Greentechmedia article, Khosla summarizes the field, and looks at some particular advantages and disadvantages. The table below comes from the GTM article.

Table 1: Major Biofuel Technology Pathways





FCU (minimum size cash flow positive facility)[1]

Liquid fermentation to higher alcohols, hydrocarbons and esters

Examples: LS9, Gevo, Amyris, Solazyme

Sugars (e.g., corn, sugar cane, hydrolysis  sugars from cellulosic feedstocks)

Highly controlled, single chemical output, pathway dependent (e.g., iso-butanol, FAME, Esters, lipids, Farnesene) fuels are less likely to be economic if they need significant post-processing. Direct production of fuel blends like butanol or FAME may allow for earlier entry into fuels.  Costs are less critical for chemicals.

Suitable for specialty chemicals and specialty fuels (e.g., jet). Starting to build first commercial units: target 2012 to 2013. Need to reach commercial yields at demo, and test 2,000-gallon-tank scale to prove economics or 100K gallon/year facility scale to have reliable data; many do; various chemical outputs give them options.

Retrofits/bolt-ons costing $40M to $100M to cash flow facility. Varies widely, but small $ allows low-risk bootup. Companies that require new facilities will have difficulty booting up unless facility is very low cost.

Liquid fermentation of cellulosic feedstocks to ethanol

Examples: Mascoma, Verenium, Qteros, (Novozymes, Danisco)

Sugars via hydrolysis of cellulosic material (described below)


Enzymatic processes such as Novozymes are unlikely to be competitive. Cheap cellulosic sugars may help enable these pathways. In Mascoma’s case, use of CBP (consolidated bioprocessing) helps alleviate the high cost of enzymes and may have lowest cost in this class, but none are economic yet.

$175M to $300M

Gas fermentation

Examples: Lanzatech, Coskata, Ineos

Steel/coal waste gas; syngas from biomass or coal

Highly controlled, single or multi chemical output (e.g., ethanol,  2,3-Butanediol, & other specialty chemicals)

High capex for biomass, but low opex; low capex  & opex for waste gases; suitable for ethanol, more upside in chemicals; FCU in 2012 to 2013

$400M to $500M for commercial plant with biomass gasification including fermentation; $50M to $100M for backend waste gas conversion

Catalyzed thermo-chemical cracking

Example: KiOR

Lignocellulosic biomass, all types, from wood whole logs, ag & wood wastes, algae  etc.

Relatively easy “drop-in” renewable crude oil. With hydrotreating, can produce fuel blendstock

Scalable process, familiar to oil industry. Similar supply chain and uses, FCU operational in 2011 to 12; likely to be competitive unsubsidized near term at $80 oil; high-value distillates

$75M to $125M

Solar fuels

Examples: Sapphire, Cellana, Aurora Algae, General Atomics, Petro algae

Waste water,  CO2 + sunlight 

Lipids that can be converted to biodiesel (FAME, green diesel, jet fuel or other), or nutraceuticals

No clear near term path to economic viability. High theoretical yields per acre (>4,000 gal/acre), but not proven. Pilot and demonstration scale.  We are skeptical of economics in this category; larger environmental risk for GMO open pond organisms

Hundreds of millions(?)

Natural oil hydro-treatment to produce hydrocarbons

Example: Dynamic Fuels

Natural oils and fats (palm, vegetable, animal fat, etc.)

Hydrocarbon fuels

Limited scalability due to feedstock

~$100M to $150M

Pyrolysis oil hydro-treatment to produce hydrocarbons


UOP/Ensyn, Neste

Wood chips and wood waste

Hydrocarbon fuels

Significant hydro-treating required due to high oxygen content to produce hydrocarbons

~$100M to $200M(?)

Transesterification of vegetable oils, animal fats

Natural oils and fats (palm, vegetable, animal, etc.)


Limited scalability. Often food-based and likely less economic. Land use concerns due to low yield.


Gasification with thermochemical conversion to ethanol, methanol and hydrocarbons

Examples: Choren, Rentech, Range

Cellulose/ hemicellulose/lignin

Syngas for fermentation, or for chemical catalysis conversion to ethanol, methanol, or Fischer Tropsch to hydrocarbons

Chemical catalysis for ethanol and Fischer Tropsch likely uneconomic. High capex, high opex.

Hundreds of millions

Liquid Catalytic conversion of sugars to hydrocarbons

Example: Virent

Sugars (e.g., corn, sugar cane, hydrolysis  sugars from cellulosic feedstocks)

Hydrocarbon fuels

Limited information available, clean sugars and hydrogen appear required for good  outputs. I am somewhat skeptical but have to admit less than full knowledge of details.


The vast field of biofuels companies cannot be adequately followed by oneself. It requires many analysts working simultaneously, painstakingly compiling information in an attempt to keep up with advances, and possible shenannigans.

It is best to read both advocates and skeptics of this commercial movement, just like with any other trend which promises (or threatens) to overturn the current order.



Post a Comment

Subscribe to Post Comments [Atom]

<< Home

Newer Posts Older Posts