The PRISM reactor design, which completed U.S. Nuclear Regulatory Commission pre-application reviews in 1994, is an advanced, Generation IV sodium-cooled reactor technology. A key attribute of PRISM technology is that it generates additional electricity from recycling used nuclear fuel...
...GE-Hitachi leans away from reprocessing, and towards recycling, as a potential future fuel cycle in the USA: "Our vision is recycling—you burn the actinides in a fast reactor, such as PRISM, and you don't separate plutonium. That alleviates some of the proliferation concerns, and you get as close to closing the fuel cycle as practical. You also reduce waste, and reduce the half-life of radioisotopes that are disposed." _NuclearEngineering
The GE-Hitach PRISM reactor is a Gen. IV design that promises to recycle and burn the mountains of spent nuclear fuel left over from conventional nuclear fission reactors. If this sodium-cooled Gen IV reactor proves out in testing at the DOE Savannah River Site, it will revolutionise the nuclear waste picture.
GE Hitachi Nuclear Energy (GEH) and Savannah River Nuclear Solutions, LLC, (SRNS) signed a memorandum of understanding (MOU) to explore the potential of deploying a prototype of GEH’s Generation IV PRISM reactor as part of a proposed demonstration of small modular reactor (SMR) technologies at the US Department of Energy’s (DOE) Savannah River Site.
The MOU sets the stage for continued discussions on the potential NRC licensing and deployment of a 299-megawatt PRISM reactor at the federally owned facility. SRNS is the management and operating contractor for DOE at Savannah River Site (SRS)....
....The PRISM reactor design, which completed US Nuclear Regulatory Commission pre-application reviews in 1994, is an advanced, Generation IV reactor technology that builds on research and development of sodium-cooled reactors. A key attribute of PRISM technology is that it generates additional electricity from recycling used nuclear fuel. _GCC
No comments:
Post a Comment