Thursday, July 01, 2010

Using Ozone to Break Down Lignocellulose to Sugars

Finding a quick and thorough method of breaking down lignocellulose in biomass to sugars, for fermentation to butanol and ethanol, is one popular goal of modern biofuels researchers.
...now researchers from NC State have developed a new way to free the carbohydrates from the lignin. By exposing the plant matter to gaseous ozone, with very little moisture, they are able to produce a carbohydrate-rich solid with no solid or liquid waste.

“This is more efficient because it degrades the lignin very effectively and there is little or no loss of the plant’s carbohydrates,” Sharma-Shivappa says. “The solid can then go directly to the enzymes to produce the sugars necessary for biofuel production.”

Sharma notes that the process itself is more expensive than using a bath of harsh chemicals to free the carbohydrates, but is ultimately more cost-effective because it makes more efficient use of the plant matter.

The researchers have recently received a grant from the Center for Bioenergy Research and Development to fine-tune the process for use with switchgrass and miscanthus grass. “Our eventual goal is to use this technique for any type of feedstock, to produce any biofuel or biochemical that can use these sugars,” Sharma-Shivappa says.

The research, “Effect of ozonolysis on bioconversion of miscanthus to bioethanol,” was co-authored by Sharma-Shivappa, NC State Ph.D. student Anushadevi Panneerselvam, Dr. Praveen Kolar, an assistant professor of biological and agricultural engineering at NC State, Dr. Thomas Ranney, a professor of horticultural science at NC State, and Dr. Steve Peretti, an associate professor of chemical and biomolecular engineering at NC State. The research is partially funded by the Biofuels Center of North Carolina and was presented June 23 at the 2010 Annual International Meeting of the American Society for Agricultural and Biological Engineers in Pittsburgh, PA.

NC State’s Department of Biological and Agricultural Engineering is a joint department of the university’s College of Engineering and College of Agriculture and Life Sciences. _NCSUNews

Abstract:
“Effect of ozonolysis on bioconversion of miscanthus to bioethanol”

Authors: Anushadevi Panneerselvam, Ratna Sharma-Shivappa, Praveen Kolar, Thomas Ranney, North Carolina State University

Presented: June 23, 2010, 2010 Annual International Meeting of the American Society for Agricultural and Biological Engineers in Pittsburgh, Penn.

Abstract: Miscanthus is an energy cane capable of producing high quality lignocellulosic biomass for bioethanol production. However, the conversion of this biomass into fuel ethanol has not been investigated in depth and depends to a great extent on the pretreatment technique. Ozonolysis is a novel pretreatment method that can enhance biomass digestibility with minimal generation of chemical waste streams and degradation of the carbohydrate components. It employs ozone, a powerful oxidant, which forms highly reactive free hydroxyl ions upon decomposition thus degrading lignin in the absence of inhibitory degradation products such as furfural and HMF. This study investigates the effect of ozonolysis as a pretreatment method under room temperature and pressure. Ozone concentrations up to 60 ppm at flow rates up to 0.5 l/min are being used to pretreat several varieties of miscanthus for varying times to enhance enzymatic hydrolysis. The efficiency of pretreatment will be determined by measuring the reducing sugars generated after hydrolysis. It is expected that the results of this study will help in the development of a pretreatment process that provides higher specificity towards lignin removal compared than other delignifying agents/pretreatments. _NCSU
See Brian Westenhaus' coverage of this story

Labels: ,

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home

Newer Posts Older Posts